159 research outputs found

    In silico identification and characterization of a diverse subset of conserved microRNAs in bioenergy crop Arundo donax L.

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNA molecules involved in the post-transcriptional regulation of gene expression in plants. Arundo donax L. is a perennial C-3 grass considered one of the most promising bioenergy crops. Despite its relevance, many fundamental aspects of its biology still remain to be elucidated. In the present study we carried out the first in silico mining and tissue-specific characterization of microRNAs and their putative targets in A. donax. We identified a total of 141 miRNAs belonging to 14 families along with the corresponding primary miRNAs, precursor miRNAs and a total of 462 high-confidence predicted targets and novel target sites were validated by 5'-race. Gene Ontology functional annotation showed that miRNA targets are constituted mainly by transcription factors, but three of the newly validated targets are enzymes involved in novel functions like RNA editing, acyl lipid metabolism and post-Golgi trafficking. Folding variability of pre-miRNA loops and phylogenetic analyses indicate variable selective pressure acting on the different miRNA families. The set of miRNAs identified in this study will pave the road to further miRNA research in Arundo donax and contribute towards a better understanding of miRNA-mediated gene regulatory processes in other bioenergy crops.Peer reviewe

    Genetic structure of the Mon-Khmer speaking groups and their affinity to the neighbouring Tai populations in Northern Thailand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Mon-Khmer speaking peoples inhabited northern Thailand before the arrival of the Tai speaking people from southern China in the thirteenth century A.D. Historical and anthropological evidence suggests a close relationship between the Mon-Khmer groups and the present day majority northern Thai groups. In this study, mitochondrial and Y-chromosomal DNA polymorphisms in more than 800 volunteers from eight Mon-Khmer and ten Tai speaking populations were investigated to estimate the degree of genetic divergence between these major linguistic groups and their internal structure.</p> <p>Results</p> <p>A large fraction of genetic variation is observed within populations (about 80% and 90% for mtDNA and the Y-chromosome, respectively). The genetic divergence between populations is much higher in Mon-Khmer than in Tai speaking groups, especially at the paternally inherited markers. The two major linguistic groups are genetically distinct, but only for a marginal fraction (1 to 2%) of the total genetic variation. Genetic distances between populations correlate with their linguistic differences, whereas the geographic distance does not explain the genetic divergence pattern.</p> <p>Conclusions</p> <p>The Mon-Khmer speaking populations in northern Thailand exhibited the genetic divergence among each other and also when compared to Tai speaking peoples. The different drift effects and the post-marital residence patterns between the two linguistic groups are the explanation for a small but significant fraction of the genetic variation pattern within and between them.</p

    Phylogenomic proof of Recurrent Demipolyploidization and Evolutionary Stalling of the “Triploid Bridge” in Arundo (Poaceae)

    Get PDF
    Polyploidization is a frequent phenomenon in plants, which entails the increase from one generation to the next by multiples of the haploid number of chromosomes. While tetraploidization is arguably the most common and stable outcome of polyploidization, over evolutionary time triploids often constitute only a transient phase, or a “triploid bridge”, between diploid and tetraploid levels. In this study, we reconstructed in a robust phylogenomic and statistical framework the evolutionary history of polyploidization in Arundo, a small genus from the Poaceae family with promising biomass, bioenergy and phytoremediation species. Through the obtainment of 10 novel leaf transcriptomes for Arundo and outgroup species, our results prove that recurrent demiduplication has likely been a major driver of evolution in this species-poor genus. Molecular dating further demonstrates that the species originating by demiduplication stalled in the “triploid bridge” for evolutionary times in the order of millions of years without undergoing tetratploidization. Nevertheless, we found signatures of molecular evolution highlighting some of the processes that accompanied the genus radiation. Our results clarify the complex nature of Arundo evolution and are valuable for future gene functional validation as well as reverse and comparative genomics efforts in the Arundo genus and other Arundinoideae

    Phylogenomic proof of Recurrent Demipolyploidization and Evolutionary Stalling of the “Triploid Bridge” in Arundo (Poaceae)

    Get PDF
    Polyploidization is a frequent phenomenon in plants, which entails the increase from one generation to the next by multiples of the haploid number of chromosomes. While tetraploidization is arguably the most common and stable outcome of polyploidization, over evolutionary time triploids often constitute only a transient phase, or a “triploid bridge”, between diploid and tetraploid levels. In this study, we reconstructed in a robust phylogenomic and statistical framework the evolutionary history of polyploidization in Arundo, a small genus from the Poaceae family with promising biomass, bioenergy and phytoremediation species. Through the obtainment of 10 novel leaf transcriptomes for Arundo and outgroup species, our results prove that recurrent demiduplication has likely been a major driver of evolution in this species-poor genus. Molecular dating further demonstrates that the species originating by demiduplication stalled in the “triploid bridge” for evolutionary times in the order of millions of years without undergoing tetratploidization. Nevertheless, we found signatures of molecular evolution highlighting some of the processes that accompanied the genus radiation. Our results clarify the complex nature of Arundo evolution and are valuable for future gene functional validation as well as reverse and comparative genomics efforts in the Arundo genus and other Arundinoideae

    Unveiling diffusion pattern and structural impact of the most invasive SARS-CoV-2 spike mutation

    No full text
    SARS-CoV-2 epidemics quickly propagated worldwide, sorting virus genomic variants in newly established propagules of infections. Stochasticity in transmission within and between countries or an actual selective advantage could explain the global high frequency reached by some genomic variants. Using statistical analyses, demographic reconstructions, and molecular dynamics simulations, we show that the globally invasive G614 spike variant i) underwent a significant demographic expansion in most countries not explained by stochastic effects nor by overrepresentation in clinical samples; ii) increases the spike S1/S2 furin-like site conformational plasticity (short-range effect), and iii) modifies the internal motion of the receptor-binding domain affecting its cross-connection with other functional domains (long-range effect). Our results support the hypothesis of a selective advantage at the basis of the spread of the G614 variant, which we suggest may be due to structural modification of the spike protein at the S1/S2 proteolytic site, and provides structural information to guide the design of variant-specific drugs

    Genetic variation in Northern Thailand Hill Tribes: origins and relationships with social structure and linguistic differences

    Get PDF
    Background: Ethnic minorities in Northern Thailand, often referred to as Hill Tribes, are considered an ideal model to study the different genetic impact of sex-specific migration rates expected in matrilocal (women remain in their natal villages after the marriage and men move to their wife's village) and patrilocal societies (the opposite is true). Previous studies identified such differences, but little is known about the possible interaction with another cultural factor that may potentially affect genetic diversity, i.e. linguistic differences. In addition, Hill Tribes started to migrate to Thailand in the last centuries from different Northern areas, but the history of these migrations, the level of genetic legacy with their places of origin, and the possible confounding effects related to this migration history in the patterns of genetic diversity, have not been analysed yet. Using both original and published data on the Hill Tribes and several other Asian populations, we focused on all these aspects. Results: Genetic variation within population at mtDNA is lower in matrilocal, compared to patrilocal, tribes. The opposite is true for Y-chromosome microsatellites within the Sino-Tibetan linguistic family, but Hmong-Mien speaking patrilocal groups have a genetic diversity very similar to the matrilocal samples. Population divergence ranges between 5% and 14% at mtDNA sequences, and between 5% and 36% at Y-chromosomes STRs, and follows the sex-specific differences expected in patrilocal and matrilocal tribes. On the average, about 2 men and 14 women, and 4 men and 4 women, are exchanged in patrilocal and matrilocal tribes every generation, respectively. Most of the Hill Tribes in Thailand seem to preserve a genetic legacy with their likely geographic origin, with children adoption probably affecting this pattern in one tribe. Conclusion: Overall, the sex specific genetic signature of different postmarital habits of residence in the Hill Tribes is robust. However, specific perturbations related to linguistic differences, population specific traits, and the complex migratory history of these groups, can be identified. Additional studies in different populations are needed, especially to obtain more precise estimates of the migration parameters

    A validated protocol for eDNA-based monitoring of within-species genetic diversity in a pond-breeding amphibian

    Get PDF
    In light of the dramatic decline in amphibian biodiversity, new cost-efficient tools to rapidly monitor species abundance and population genetic diversity in space and time are urgently needed. It has been amply demonstrated that the use of environmental DNA (eDNA) for single-species detection and characterization of community composition can increase the precision of amphibian monitoring compared to traditional (observational) approaches. However, it has been suggested that the efficiency and accuracy of the eDNA approach could be further improved by more timely sampling; in addition, the quality of genetic diversity data derived from the same DNA has been confirmed in other vertebrate taxa, but not amphibians. Given the availability of previous tissue-based genetic data, here we use the common frog Rana temporaria Linnaeus, 1758 as our target species and an improved eDNA protocol to: (i) investigate differences in species detection between three developmental stages in various freshwater environments; and (ii) study the diversity of mitochondrial DNA (mtDNA) haplotypes detected in eDNA (water) samples, by amplifying a specific fragment of the COI gene (331 base pairs, bp) commonly used as a barcode. Our protocol proved to be a reliable tool for monitoring population genetic diversity of this species, and could be a valuable addition to amphibian conservation and wetland management

    Population dynamic of the extinct European aurochs: genetic evidence of a north-south differentiation pattern and no evidence of post-glacial expansion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aurochs (<it>Bos primigenius</it>) was a large bovine that ranged over almost the entirety of the Eurasian continent and North Africa. It is the wild ancestor of the modern cattle (<it>Bos taurus</it>), and went extinct in 1627 probably as a consequence of human hunting and the progressive reduction of its habitat. To investigate in detail the genetic history of this species and to compare the population dynamics in different European areas, we analysed <it>Bos primigenius </it>remains from various sites across Italy.</p> <p>Results</p> <p>Fourteen samples provided ancient DNA fragments from the mitochondrial hypervariable region. Our data, jointly analysed with previously published sequences, support the view that Italian aurochsen were genetically similar to modern bovine breeds, but very different from northern/central European aurochsen. Bayesian analyses and coalescent simulations indicate that the genetic variation pattern in both Italian and northern/central European aurochsen is compatible with demographic stability after the last glaciation. We provide evidence that signatures of population expansion can erroneously arise in stable aurochsen populations when the different ages of the samples are not taken into account.</p> <p>Conclusions</p> <p>Distinct groups of aurochsen probably inhabited Italy and northern/central Europe after the last glaciation, respectively. On the contrary, Italian and Fertile Crescent aurochsen likely shared several mtDNA sequences, now common in modern breeds. We argue that a certain level of genetic homogeneity characterized aurochs populations in Southern Europe and the Middle East, and also that post-glacial recolonization of northern and central Europe advanced, without major demographic expansions, from eastern, and not southern, refugia.</p

    The Biarzo case in northern Italy: Is the temporal dynamic of swine mitochondrial DNA lineages in Europe related to domestication?

    Get PDF
    Genetically-based reconstructions of the history of pig domestication in Europe are based on two major pillars: 1) the temporal changes of mitochondrial DNA lineages are related to domestication; 2) Near Eastern haplotypes which appeared and then disappeared in some sites across Europe are genetic markers of the first Near Eastern domestic pigs. We typed a small but informative fragment of the mitochondrial DNA in 23 Sus scrofa samples from a site in north eastern Italy (Biarzo shelter) which provides a continuous record across a ≈6,000 year time frame from the Upper Palaeolithic to the Neolithic. We additionally carried out several radiocarbon dating. We found that a rapid mitochondrial DNA turnover occurred during the Mesolithic, suggesting that substantial changes in the composition of pig mitochondrial lineages can occur naturally across few millennia independently of domestication processes. Moreover, so-called Near Eastern haplotypes were present here at least two millennia before the arrival of Neolithic package in the same area. Consequently, we recommend a re-evaluation of the previous idea that Neolithic farmers introduced pigs domesticated in the Near East, and that Mesolithic communities acquired domestic pigs via cultural exchanges, to include the possibility of a more parsimonious hypothesis of local domestication in Europe
    corecore